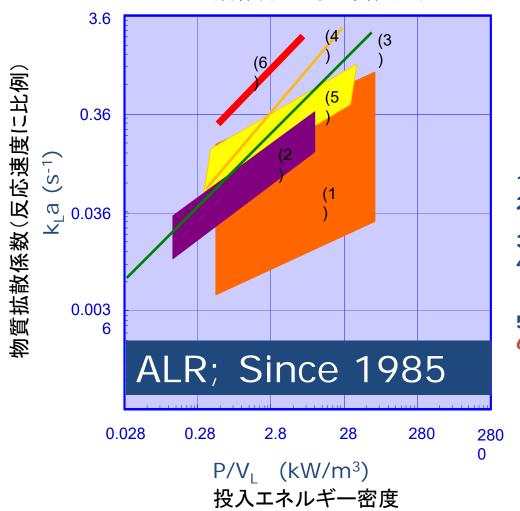


ガス-液反応系反応槽改善案

- 1. 各種反応槽 Kla 値と投入エネルギーMap
- 2. 内部熱交の外出し効果(ループリアクター効果の半分)
- 3. 攪拌型反応槽から(性能比較例)
- 4. 「ループリアクターへの道」; 段階的性能アップと循環ポンプ
- 5. ガス-液反応系収率アップ提案
- 6. TRG型ガス注入器性能(Frings社資料)


平成27年8月 ユーロ・プロテック株式会社

EGGER

1.物質移動係数から観た各種反応缶の性能比較

(合体反応のない条件下で)

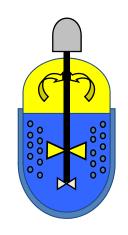
両対数目盛にご留意!

旧型リアクターと比較しても 約5 倍の反応速度を示している

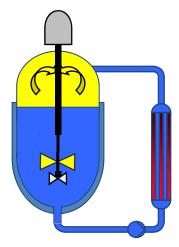
- 1. 撹拌槽型オートクレープ(外部ジャケット方式)
- 2. 従来型熱交内臓型6枚羽タービン式オートクレーブ
- 3. 従来型熱交内臓型自己吸引式オートクレープ
- 4. 従来型熱交内臓型EKATO

自己吸引式オートク

- レープ
- 5. 旧型ループ・リアクター
- 6. Advanced Loop Reactor [ALR]


出典

- 1) Van Dierendonck et al. (1988)
- 2) Ekato's Mixing Handbook
- 3) Ph D thesis ETH Zürich
- 4) PhD University Groningen


不許複製;:本書類の版権はユーロ・プロテック株式会社及びEmil Egger社にあります

EGGER

2.1 外置き熱交換器のメリット

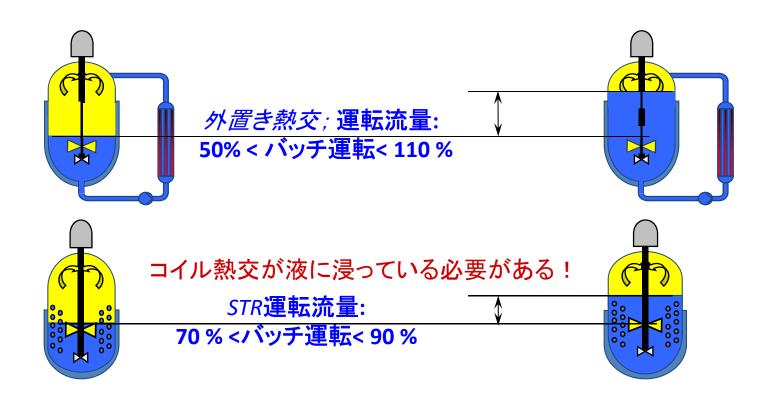
VS.

外部熱交方式反応槽:

ジャケット・コイル・分散板つき攪拌槽:

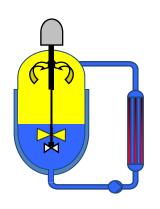
 α_{Heat} is 100-500 W/m²/C

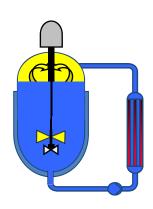
伝熱面積は攪拌槽の大きさに依存 伝熱面積は攪拌槽への充填量に依存しない 伝熱面積は<8 m²/ m³ 槽内流動パターンが粘度など物性に大きく依存 → 熱伝達率が計算に乗らない→ 温度管理が難 槽内付属品が多く、洗浄が難 → クロスコンタミ α_{Heat} is 900-1200 W/m²/C


伝熱面積は攪拌槽の大きさに依存しない 伝熱面積は攪拌槽への充填量に依存しない 伝熱面積は>>8 m²/m³ 熱交管内通過の流動パターンは計算に乗る → 温度管理が容易 → 副生成物少ない 槽内洗浄が容易→ 品質向上

2.2 外置き熱交換器のメリット

負荷変動への柔軟な対応性

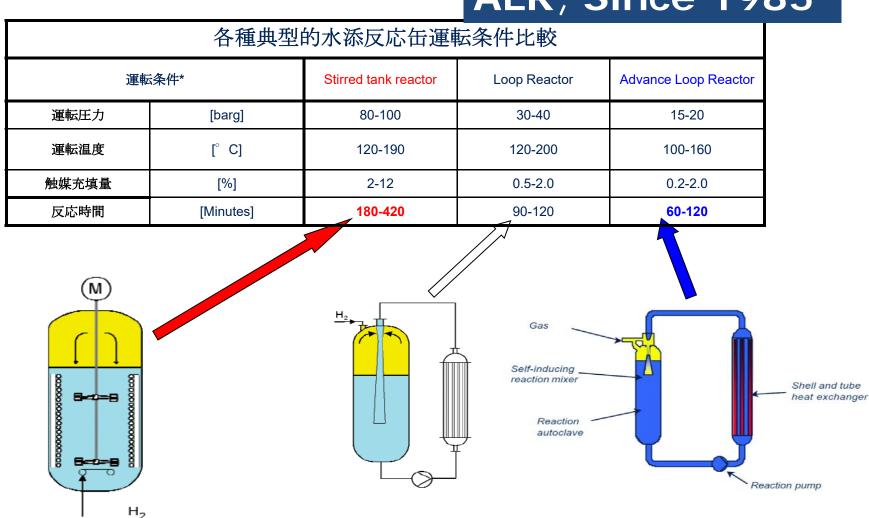


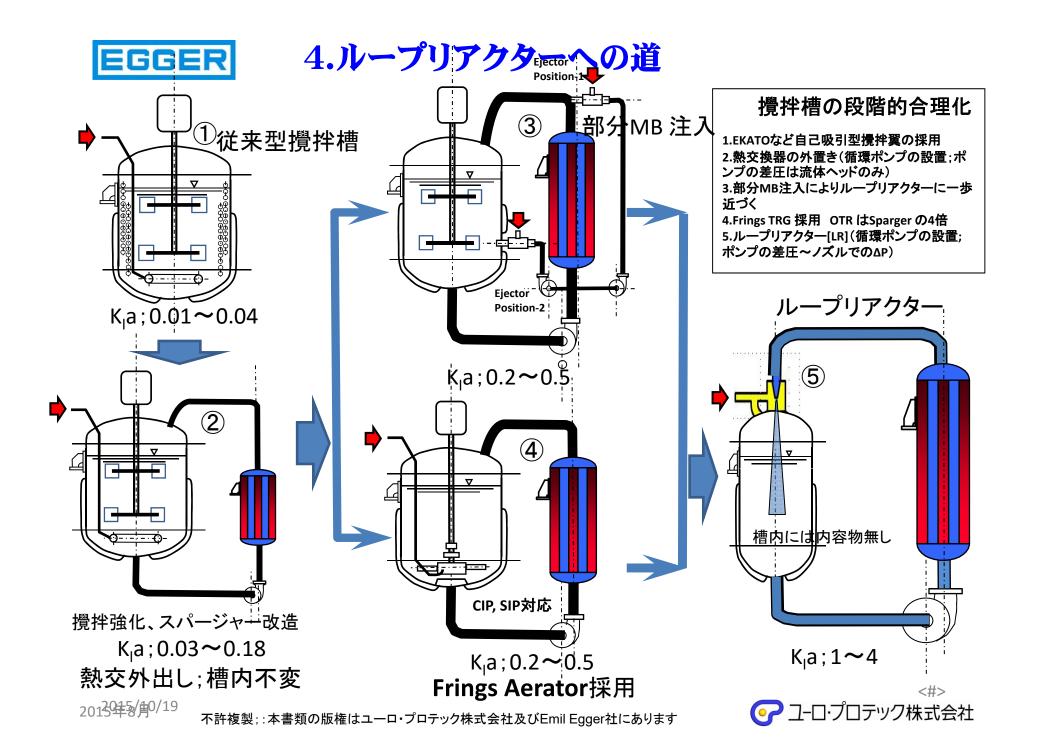


2.3 外置き熱交換器のメリット一総括

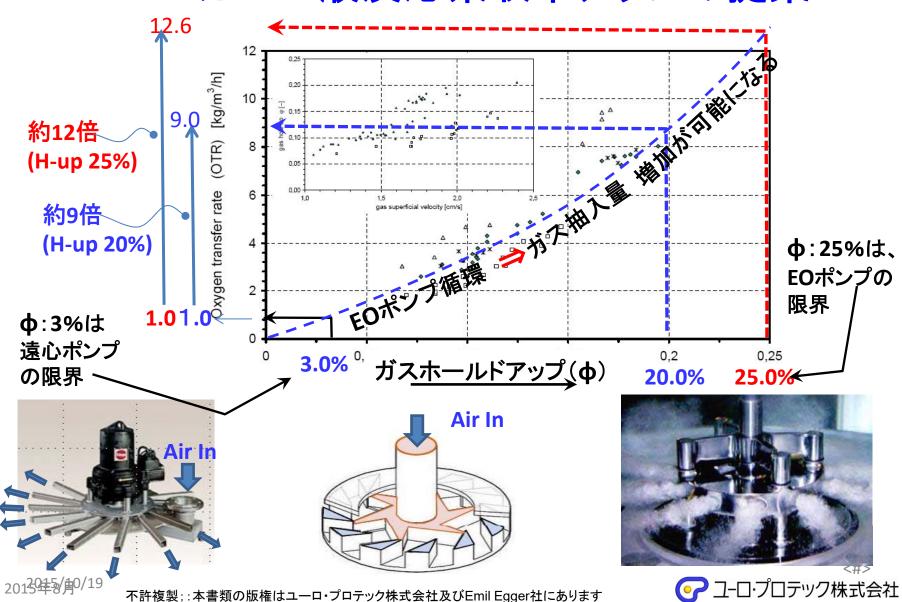
負荷変動への柔軟な対応性

	熱交外置き型	従来型攪拌槽
製品々質向上 反応速度 除熱能力 バッチ間時間 攪拌動力 反応槽サイズ	大大大短小小	No No No 大 大
もし、エジェクター ガス循環 /分散 反応速度	-採用が可能なら 大 特大	No No


以上のメリットの多くは、低剪断力且つ高ガス伴流性能によります EOポンプが最適です。


3. 攪拌槽とループリアクター性能比較

ALR; Since 1985


不許複製;:本書類の版権はユーロ・プロテック株式会社及びEmil Egger社にあります

→ ユーロ・プロテック株式会社

EGGER

5. ガス一液反応系収率アップの提案

6.1 TRGガス注入機性能(Frings社資料より抜粋)

仕様項目	使用範囲	特性	備考
適用槽サイズ	V= 10 ~ 500* m3	縦横比(高さ H/ 直径D):ξ < 3	小規模反応槽の場合は、自己吸引タイプ FRIBORATOR が適している
ガス注入力	q = 0.01 ~ 5 vvm	高ガス注入では、ガス循環筒が有効な場合がある	
適用温度	T< 80 °C **	ガス注入量は流体の運転温度で の蒸気圧、や運転圧力に関わる。	蒸気圧が低い場合は、高温もあり得る。
流体側粘度	η < 300 mPas	粘度レベルに応じた機種	粘度が高い場合は、低速運転のハイブリッド機 構:TRG + low speed mixer
エネルギー入力	P/V = 0.5 - 20 kW/m3	P=星型タービン駆動パワー+ガス 注入に要するパワー	大型反応槽の上限; P/V= 4 kW/m3
流体力学的ストレス	ε /ε 0>> 40(最大エネルギー逸散率を平均エネルギー逸散率で割った値)		ストレスに敏感な触媒(菌糸体)を使用する場合 は、テストが必要
固体成分	< 20%		Raney Nickel 触媒が含まれていても、運転可能
運転圧力	P< 5 bar		特殊な場合 100 気圧以上の反応槽に適用可能
ガス注入対象流体	分散コロイド、乳化型反応、懸濁型反応	バブル合体禁止剤が有効	バブル合体が大きいと溶け込み酸素量は限定的 になる
使用材料	標準使用材; DIN1.4571 (SUS316Ti)	表面租度<0.4µ	耐酸性、耐アルカリ性、耐腐食性金属も可

EGGER 6.2 ガス注入性能比較; TRG vs. 攪拌翼

	FRINGS TRG	DISK BLADE STIRRER
 醗酵槽容量[m³]	100	100
 槽直径[m]	4,8	4,8
運転圧力(abs.) [mbar]	1013	1013
D(ローター径)/d(槽径)	0,22	0,33
ローター段数	1	3
羽根形状	6 star	6x90°
回転数[rpm]	348	100***
空気注入量[Nm3/h]	6600	6600
ブロア動力[kW]	231 - 96	430 T 126
ローター駆動力[kW]	135	304
ローター駆動トルク[Nm]	3567	29050
レイノズル数	1,84x10 ⁶	半分 0,84x10 ⁶
ニュートン数	0,43	13,82
ΔP [mbar]	170	0
動粘度** [Pas]	0,004	0,004
比重力[kg/m³]	1070	1070
O ₂ 飽和濃度* [mg/L]	6	6
ミキシング・タイム(t90 [s]9	55	45 – 60
酸素供給量 [kgO2/m3/h]	5,1	2,9 – 4,5**
酸素注入効率 [kgO2/kWh]	2,2	0,7 *- 1,1

2013年列20/19

不許複製;:本書類の版権はユーロ・プロテック株式会社及びEmil Egger社にあります

6.3 FRINGS社TRGガス注入機

ミキシング強度は攪拌翼と変わらない事が特徴; t90 ~11sec.

→ ユーロ・プロテック株式会社

ご静聴有難う御座いました。

酵母・健康食品醗酵プラント

2014年7月納入の醗酵プロセス用 EOポンプ2 機種;

何れも、ガス搬入率20 [vol.%]

2013年4月0/19